4 Metodologia

4.1 Origem das amostras

A coleta das amostras de espeleotemas foi realizada por Luis B. Pilo (USP) na região cárstica de Lagoa Santa – MG, foram coletadas dez (fig. 4.1) para este estudo. A amostra de coral foi coletada pelo CENPES na Bacia de Campos.

Figura 4.1 – Coleção de amostras da região cárstica de Sete Lagoas – MG.

Os materiais de referências utilizado na certificação dos métodos desenvolvidos foi o IAEA-327, radionuclídeos em solo, da International Atomic Energy Agency e o NIST SEM 4357 solo.

4.1 Reagentes

Foram utilizadas duas colunas cromatográficas, sendo uma adquirida da Eichrom, TRU-resina (100 – 150 μ) part n⁰. TR-C50-A, e outra, TOPO – sílica gel preparada de acordo com o procedimento descrito na literatura por Lauria (1986).

Os ácidos utilizados nas digestões foram HCl 37%v/v, que foi adquirido da Merck (Darmastadt, Germany) e o HNO₃ que foi destilado por sub-ebulição e o HF da Merck (Darmastadt, Germany).

As soluções padrão de urânio e tório contendo 1000mg/L de cada elemento foram adquiridos da Merck (Darmastadt, Germany).

Os traçadores de urânio e tório foram adquiridos do Instituto de Radioproteção e Dosimetria – IRD, contendo:

- ²³⁶U Atividade (massa-volume) 1,539 Bq/g,
- 236 U Atividade (massa-volume) 9,1 x 10^{-3} Bq/g,
- ²²⁹Th Atividade (massa-volume) 1,475 Bq/g e
- ²²⁹Th Atividade (massa-volume) 9,240 Bq/g.

Todos os demais reagentes utilizados foram adquiridos da Merck (Darmastadt, Germany) de grau PA.

Os frascos utilizados para a determinação das concentrações dos radionuclídeos das amostras, antes de serem usados, foram armazenados por vários dias em HNO₃ 10%v/v, posteriormente lavados com água ultra purificada, qualidade Milli-Q[®], secos e armazenados em potes de polietileno hermeticamente fechados.

4.3 Equipamentos

As determinações das concentrações de ²³²Th e ²³⁸U foram feitas no ICP-MS com quadrupolo, Perkin-Elmer ELAN 6000 (Perkin-Elmer, Shelton, U.S.A.), operando no modo quantitativo empregando Tl como padrão interno, as condições de operação e calibração do equipamento foram semelhantes as utilizadas por Godoy et al(2005). Para o desenvolvimento e aplicação da determinação de ²³⁰Th e ²³⁴U pela técnica de injeção em fluxo acoplada ao ICP-MS, foi acoplado, ao Perkin-Elmer ELAN 6000, um sistema de injeção em fluxo (FIAS-200, Perkin-Elmer) equipado com um amostrador automático (AS-90, Perkin-Elmer).

Para determinar as atividades dos radionuclídeos por espectrometria alfa foi utilizado um espectrômetro alfa EG&G modelo 576, que é um modelo contendo dois espectrômetros alfa em canais indepedentes. Cada canal inclui uma câmara de vácuo, uma fonte de alimentação, um pré-amplificador, um amplificador e um detector do tipo barreira de superfície. Utilizou-se um detector com janela de alumínio (EG & ORTEC) modelo BR-25-450-100, com uma resolução nominal de 25KeV, uma área ativa de 450mm2 e uma espessura sensível de 100 μ m. Para a geometria escolhida (2 π) a eficiência de contagem é 30%. A contagem da radiação de fundo, e a contagem das amostras foi realizada de acordo com o procedimento descrito na literatura por Lauria (1986).

As digestões foram feitas no digestor de microondas da Provecto Analítica modelo DGT 100 Plus (Brasil). O instrumento é operado numa freqüência de 2458 MHz, com potência de 0-900W com ajuste de incremento de 10 W, contendo um carrossel para 6 amostras. O frasco de amostra apresenta um volume de 100 mL, contudo suporta um volume máximo de 20 mL de mistura ácida, dependendo do procedimento empregado.

4.4 Procedimentos

4.4.1 Preparação de amostra

Diferentes massas de amostras têm sido utilizadas para a datação de corais variando de 1 g a 10 g, e de espeleotemas, variando de 1 a 5 g (Ku *et al*, 2000). Neste estudo, optamos por 1 g de espeleotema e 5 g de coral que representou uma quantidade satisfatória para a determinação dos radionuclídeos.

Devido à necessidade de determinar a contribuição detrítica, às amostras de espeleotemas foram subdivididas em quatro frações - mesh<50, 50<mesh<100, 100<mesh<150 e mesh>150. A amostra de coral era da espécie *Lophelia pertusa* que, dada sua coloração, apresentava uma baixa contaminação dentrítica. No entanto, a amostra foi submetida ao processo de limpeza, proposto por Lomitschka e Mangini (1999), a base de uma mistura de ácido ascórbico e EDTA. Após este procedimento, o coral foi subdividido segundo suas ramificações (primária, secundária e terciária). No presente trabalho, apenas o ramo principal foi utilizado.

Antes do início do processo de solubilização das amostras, era realizada a adição dos traçadores de 229 Th e 236 U. Todas as amostras inicialmente foram adicionados 10 mL HNO₃ concentrado e depois centrifugadas por 15 minutos a uma velocidade de 3000 rotações por minuto. A parte líquida foi transferida para um tubo de polipropileno de 50 mL, e o resíduo lavado com 5 mL de água qualidade Milli-Q[®]. A solução obtida era evaporada a secura e retomada com 10 mL 1M HNO₃. O resíduo, desta primeira solubilização, foi digerido em microondas, com 10 mL HNO₃ conc. e 5 mL de HF conc., conforme programa apresentado na Tabela 4.1. A solução obtida era evaporada a secura e retomada com 10 mL 1M HNO₃ e 1 mL Al(NO₃)₃. Caso houvesse restado algum resíduo, após a digestão em microondas, este era transferido para um béquer de teflon, o frasco de reação era lavado várias vezes com água qualidade Milli-Q[®], para a transferência ser quantitativa. Ao resíduo foi adicionado, duas vezes, em sistema aberto uma mistura ácida (5 mL HNO₃ + 1 mL HClO₄ + 5 mL HF), levando a solução a secura. Após a segunda digestão ácida, o resíduo foi solubilizado com 10 mL 1M HNO₃ e 1 mL Al(NO₃)₃, a solução adicionada ao tubo de polipropileno. A solução final era avolumada, com HNO₃ 1M, para 30mL. Para cada lote de amostras (5), foi realizado um branco. Antes de cada digestão no forno de microondas, os frascos foram descontaminados com 19 mL de HNO₃ 10%v/v, aquecido por 30 minutos a 400W.

Etapa	Potência (W)	Tempo (min)	
Programa		(Total = 40 min)	
1	400	5	
2	600	20	
3	400	5	
4	0	10	

Tabela 4.1 - Programa para digestão utilizando o microondas DGT 100 plus

4.4.2 Determinação de U e Th por espectrometria alfa

Após a solubilização das amostras, a partir de dados obtidos na literatura, propriedades químicas dos radionuclídeos de interesse e disponibilidade de reagentes e equipamentos foram idealizadas duas metodologias de determinação de U e Th. A primeira utilizando uma coluna recheada com Tri-octil óxido de fosfina (TOPO) – sílica gel de acordo com o procedimento descrito por Lauria (1986), empregando, entretanto, uma coluna com 1cm de diâmetro e 5 cm de altura. A segunda utilizando a TRU-resina como mostra a figura 4.2 As duas colunas cromatográficas utilizadas eram inicialmente condicionadas com HNO₃ na concentração da solução de alimentação (amostra). A velocidade da solução de alimentação foi estabelecida em 1mL/min. Após a alimentação, a coluna foi lavada, duas vezes, com 10 mL de HNO₃ na mesma concentração da solução de alimentação, a coluna era lavada com água e HNO₃ para ser, quando necessário, reutilizada.

Na figura é mostrada, no caso do Th, como forma de preparo da fonte para espectrometria alfa, duas opções, um por micro co-precipitação com LaF_3 e outra por deposição em filme de TOPO. Ambas as possibilidades foram testadas, no presente trabalho, e serão objeto de discussão posterior.

Figura 4.2 – Fluxograma da separação U e Th utilizando a TRU-resina e posterior quantificação pela técnica de espectrometria alfa.

4.4.3 Determinação de U e Th por ICP-MS com separação "off line"

De modo a não ocupar o ICP-MS por um período muito longo, foi idealizada uma metodologia de determinação de U e Th em ICP-MS, como mostra a figura 4.3, onde a separação se dá "off-line" e é destinada, apenas, a eliminação da matriz, sendo U e Th co-eluídos.

Figura 4.3 - Fluxograma da separação U e Th "off-line" e posterior quantificação pela técnica de ICP-MS.

4.4.4 Determinação de U e Th por ICP-MS com separação "on line"

O programa inicialmente utilizado baseou-se no trabalho de Hollenbach *et al.* (1995), sem a adoção da bomba auxiliar, empregada para auxiliar na limpeza do nebulizador e da câmara de nebulização, e com uma redução à metade da concentração do eluente, oxalato de amônio 0,1 M, de modo a evitar uma oclusão do cone com a formação de depósitos na região do orifício de entrada. Toda tubulação utilizada era de poli-tetrafluor etileno (PTFE), tendo a tubulação que conectava a válvula ao nebulizador 0,2 mm de diâmetro interno, as demais tubulações utilizadas nas conecções do sistema FIA possuíam 0,76 mm de diâmetro interno. Os tubos de aspiração da amostra e da solução de lavagem possuíam 1,52 mm de diâmetro, enquanto a do eluente 1,14 mm. O sistema FIA utilizado, com as posições da válvula, aparece na Figura 4.4 e a tabela 4.2 detalha o esquema de operação do sistema FIA. As condições de operação do ELAN 6000 acoplado ao sistema FIA são apresentadas na Tabela 4.3.

Etapa	Leitura	Tempo (s)	Bomba 1 (rpm)	Bomba 2 (rpm)	Posição válvula	Solução
Pré-amostra		60		60	1	HNO ₃ 4M
Alimentação		99	80		1	HNO ₃ 4M
Lavagem		30		60	1	HNO ₃ 4M
Início Eluição		20		120	2	$(NH_4)C_2O_4$
						0,05M
Eluição Leitura	Sim	40		120	2	$(NH_4)C_2O_4$
						0,05M
Lavagem 1		60		120	2	$(NH_4)C_2O_4$
						0,05M
Lavagem 2		60		60	1	HNO ₃ 4M
Pós-amostra		30	60		2	H_2O

Tabela 4.2 - Esquema de separação U e Th

Figura 4.4 - Sistema de injeção em fluxo com o trocador de amostra, mostrando também as conecções de acordo com a posição da válvula:

Tabela 4.3 - Condições de operação do ICP-MS Perkin-Elmer ELAN 6000, quando
acoplado ao sistema de injeção em fluxo.

Potência do gerador de alta freqüência	1050 W		
Fluxo argônio plasma	$17 \mathrm{L min}^{-1}$		
Fluxo auxiliar do argônio	1,2 L min ⁻¹		
Fluxo de argônio no nebulizador	0,9 L min ⁻¹		
Modo varredura	Peak hopping transiente		
Varredura das lentes	Habilitada		
Modo detector	Dual – Pulso e analógico		
Tempo de permanência	30 ms		
Varredura/Leitura	1		
Leitura/Replicata	300		
Número de replicatas	1		
Resolução	0,7 uma a 10% do máximo do pico		
Processamento do sinal	Integração dos picos espectrais		